納米有機蒙脫土在與聚乙烯混合過程中剝離為納米尺度的結(jié)構(gòu)片層,均勻分散到聚乙烯基體中,從而形成納米聚乙烯。這種插層復(fù)合技術(shù)是基于在傳統(tǒng)工藝基礎(chǔ)上的技術(shù)革命,不需要新的高昂設(shè)備投資,操作方便,環(huán)境友好,容易實現(xiàn)工業(yè)化生產(chǎn)。納米聚乙烯在加工過程中比聚乙烯熔化得快,加工溫度可低一些,由于納米復(fù)合低密度聚乙烯交聯(lián)電力電纜絕緣料能在稍低的溫度下熔化,而且熔化的時間微短,這正是生產(chǎn)交聯(lián)電纜料需要的也重要的關(guān)鍵工藝,這樣它可以大大減小電纜料的預(yù)交聯(lián),提高了加工安全性大幅提高電纜料的產(chǎn)品檔次,杜絕廢次品。
低密度聚乙烯粒料、蒙脫土、復(fù)合型交聯(lián)劑在密煉機中進行密煉,由于復(fù)合交聯(lián)劑均為液體,密煉機轉(zhuǎn)子勻速攪拌混合,借助分子間作用力,交聯(lián)劑在聚乙烯與蒙脫土之間的粘著作用,液態(tài)交聯(lián)劑會很快的非常均勻地薄薄地涂覆在每一粒聚乙烯表面,納米蒙脫土也借助液體交聯(lián)劑均勻地被研磨粘附在聚乙烯顆粒表面。很快聚乙烯顆粒和蒙脫土在運動中因粒子間相互碰撞及物料與鍋壁以及攪拌轉(zhuǎn)子的運動摩擦和密煉機外部加熱而迅速升溫到 108 ~115C熔點熔融后,將抗氧劑等加工助劑按比例加入密煉機中進行短時低速攪拌,將所有的樹脂、助劑實現(xiàn)理想熔融共混。
當復(fù)合聚烯烴材料用作絕緣料時,其介電性能是重要的參數(shù)之一,而其吸水性則會影響介電性能及長期使用穩(wěn)定性。當聚合物的單體是親水性的極性單體,或帶有鞍酸鹽基團時,吸水性會更強從而導(dǎo)致材料電阻率降低,絕緣性能變差,甚至絕緣層被擊穿導(dǎo)致漏電,并且存在終引燃電纜材料發(fā)生火災(zāi)的風險。大多數(shù)電纜材料用聚合物可燃.有的在燃燒時會產(chǎn)生大量的有毒氣體和濃煙,對環(huán)境造成危害并威脅生命財產(chǎn)安全。因此要控制絕緣材料的吸水量。
加入了O-MMT的材料吸水率雖然大于未添加O-MMT的材料,但是吸水率增加并不明顯,并且O-MMT添加量為35和7 phr的樣品吸水率并沒有明顯差別。這是由于雖然MMT的層間結(jié)構(gòu)松散,水分子或其他有機分子可以進人層間,造成MMT具有吸濕性,但是因為MMT片層表面存在釋基,這些輕基可以和POE-g-MAH、EVM等分子鏈上的親水基團通過氫鍵作用形成物理交聯(lián),又降低了體系的總吸水率,而且MMT本身濕容量低,所以材料吸水率并沒有隨著MMT的增加而明顯增加。同時,體系中的MH、MMT都經(jīng)氨基硅烷包覆處理,大大降低了其本身的吸水性。
這種納米結(jié)構(gòu)和形態(tài)特性不同于其他二維、三維無機納米粒子,從而賦予聚合物/蒙脫石復(fù)合材料以一些的機械性能,熱性能,功能性能和其他的物理性能。已有的實踐結(jié)果表明聚合物/蒙脫石納米復(fù)合材料,機械性能明顯提高,例如拉伸強度,彎曲強度提高20-50%,模量提高1-2倍;摩擦系數(shù),耐磨性提高1倍。熱變形溫度,結(jié)晶聚合物(如PA)提高80-90℃,非結(jié)晶聚合物提高10-30℃;熱膨脹系數(shù)減少約40%,材料的吸濕速度降低50%,尺寸穩(wěn)定性提高提高2-5倍;水蒸氣、O2、CO2紫外光透過率降低到1/2至1/5;熱釋放速度明顯延緩,阻燃性顯著提高,熔融流動性增加,成型收縮率降低,加工性能改善;復(fù)合材料的比重與單一聚合物相近,比常規(guī)無機填料改性的聚合物比重降低20-30%。材料的透光性也有不同程度的提高。因此聚合物/蒙脫石納米復(fù)合材料成為新一代高阻隔性包裝材料,高強度輕量化工程材料,高阻燃絕緣電器材料和抗疲勞彈性體材料。
納米蒙脫土系蒙皂石粘土(包括鈣基、鈉基、鈉-鈣基、鎂基蒙粘土)經(jīng)剝片分散、提純改型、超細分級、特殊有機復(fù)合而成,平均晶片厚度小于25nm,蒙脫石含量大于95%。具有良好的分散性能,可以廣泛應(yīng)用高分子材料行業(yè)作為納米聚合物高分子材料的添加劑,提高抗沖擊、抗疲勞、尺寸穩(wěn)定性及氣體阻隔性能等,從而起到增強聚合物綜合物理性能的作用,同時改善物料加工性能。在聚合物中的應(yīng)用可以在聚合物時添加,也可以在熔融時共混添加(通常采用螺桿共混)。